Step of Proof: connex_functionality_wrt_implies
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
connex
functionality
wrt
implies
:
T
:Type,
R
,
R'
:(
T
T
).
(
x
,
y
:
T
. {
R
(
x
,
y
)
R'
(
x
,
y
)})
{Connex(
T
;
x
,
y
.
R
(
x
,
y
))
Connex(
T
;
x
,
y
.
R'
(
x
,
y
))}
latex
by ((((Unfolds ``guard connex`` 0)
CollapseTHEN (RepD))
)
CollapseTHENA ((Auto_aux (first_nat
C
1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
R'
:
T
T
C1:
4.
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
)
C1:
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
C1:
6.
x
:
T
C1:
7.
y
:
T
C1:
R'
(
x
,
y
)
R'
(
y
,
x
)
C
.
Definitions
t
T
,
P
Q
,
Connex(
T
;
x
,
y
.
R
(
x
;
y
))
,
x
(
s1
,
s2
)
,
{
T
}
,
P
Q
,
,
x
:
A
.
B
(
x
)
origin